

RabbitMQ vs Qpid

Setup / Concepts

- Same hw setup for all tests (constant)
- Same samples by num. of packets and packets sizes (constant)
- Measures sampled from the client side (constant black box testing, what does the messaging user really see?)
- Default settings for everything (constant should work out of the box right? Otherwise fix your defaults)
- No I didn't test "option foo", if it's necessary it should be in the defaults (constant)
- All setups and how-to's are documented. It's easy for anybody to replicate the tests
- Split into many graphs to make it easier to ready

References

- http://rhel-ha.etherpad.corp.redhat.com/RHO S-RHEL-HA-how-to-mrgcloud
- https://github.com/fabbione/rhos-ha-deploy
- https://github.com/fabbione/oslo-messaging-clie nts
- (modified version of kgiusti tree, to print more info related to performances and adds info on setup and how to run tests)

What did we measure?

Every graph contains the transactions/sec relation with packet size. The higher the transation number the better. All tests have been repeated with/without LB to grasp overhead/benefits of a LB managed queue.

The matrix:

Qpid	+LB	Hot-Standby	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	-LB	Hot-Standby (*)	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	+LB	A/A clustered (not supported)	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	-LB	A/A clustered (not supported) (*)	0, 1, 2, 4, 8, 16, 32, 64, 128KB
RabbitMQ	+LB	Mirrored queues	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	-LB	Mirrored queues (*)	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	+LB	No mirrored queues (*)	0, 1, 2, 4, 8, 16, 32, 64, 128KB
	-LB	No mirrored queues (*)	0, 1, 2, 4, 8, 16, 32, 64, 128KB

(*) both client and server connects to the same machine. Only useful to measure LB overhead or performance when using qpid_hosts/rabbitmq_hosts.

QPID via olso.messaging

Transactions/sec

QPID - raw (qpid-perftest)

+LB - Hot Standby

Transactions/sec

RabbitMQ via oslo.messaging

RabbitMQ - raw (java test client)

+LB - mirrored queues

- -LB - mirrored queues

+LB - Hot Standby

Transactions/sec

RabbitMQ vs Qpid via oslo.messaging

Transactions/sec

Qpid +LB - Hot Standby

RabbitMQ vs Qpid raw

Rabbit +LB - mirrored queues

Qpid +LB - Hot Standby

RabbitMQ vs Qpid

Did you really think it was that simple?!?!

Transactions/sec

Payload size

Did you forget to add numbers/data to the previous slide?

RabbitMQ vs Qpid raw

Qpid +LB - Hot Standby

RabbitMQ vs Qpid via oslo.messaging

Transactions/sec

Qpid +LB - Hot Standby

Conclusions with supported vs what customers think they want

- Raw performance shows that qpid is better for small packet sizes, rabbit for big packet size. Basically, it means absolutely nothing unless there is an analysis of OpenStack traffic patterns.
- Oslo.messaging provides a "natural QoS" for any messaging queue.
- The only driver for picking up a message queue (and LB or non-LB) access is driven only by how-fast you want to recover (and if you care about message persistence or not)