
  

Cluster Configuration Subsystem

A “under the bonnet” guide for advanced users 
and developers.

Doc version 0.1
Christine Caulfield (caulfie@redhat.com)
Fabio M. Di Nitto (fdinitto@redhat.com)



  

The following slides will explain how the Cluster 
Configuration Subsystem (CCS in short) works.

They do not contain explanations on how to 
perform basic cluster configurations.

This is document is still a work in progress. 
Please report any discrepancies or errors.

Disclaimer



  

Yes, in order to understand where we are now, 
we need to make a slight digression in the past 

to look at how the old configuration system used 
to work and what motivations drove the rewrite 

into the new one.

Bits of history (again?)



  

STABLE2

CCS, in the old times, was composed by:

● ccsd – a daemon in charge to read cluster.conf (XML format) 
and keep it synchronised across the cluster nodes
● ccs_tool – a simple CLI tool to edit and manage cluster.conf
● ccs_test – an over-abused debugging tool that become de-
facto standard to poll CCS information from CLI
● libccs – a C written library to access CCS from other 
applications
● cman_tool version – in charge of driving configuration updates 
at runtime



  

STABLE2

ccsdcluster.conf

openais

cmanconfig cmanobjdb

libccs

ccs_tool

ccs_test



  

STABLE2

Cons:
● Code is old and buggy, difficult to maintain and duplicated in ricci/luci/conga.
● Cluster bootstrap issues: ccsd required quorum to operate, quorum required config 
from ccsd.
● Configuration updates are not dynamic and required too much interaction between 
tools.
● Configuration bits were duplicated between ccsd and openais/objdb.
● Lots of hacks in place to allow ccs_test to work from command line.
● Libxml2 was not used properly with lots of overhead in xpath.
● Not modular (does not allow sources other than cluster.conf)
● Applications did not have configuration change notifications.

Pros:
● Automatic config synchronisation at startup (when/if does work).



  

STABLE2
The typical workflow was:
● ccsd starts up, reads cluster.conf, loops waiting for quorum and offering cluster.conf 
unverified (available only in force mode, other apps would block on validation). If 
cluster.conf is not available, an attempt to gather the configuration from the network is 
done.
● openais starts, invoke cmanconfig to read the config from ccsd, fixes it for openais 
operations and writes it into the objdb, joins the cluster, tell ccsd that quorum is 
available.
● ccsd then verifies the configuration with the other nodes and takes actions (reject, 
update, etc).

● User updates the config, asks ccsd to reload the config via ccs_tool update
● User informs cman of the new config via cman_tool version

Other applications such as rgmanager would regularly poll ccsd to learn of 
configuration changes.



  

STABLE2 to STABLE3

Clearly the number of limitations in STABLE2, required a 
complete redesign of the configuration system.

The major drivers behind the new systems were:

● decouple ccsd functionality of configuration provider and 
synchroniser
● allow the configuration to be loaded from sources other than 
cluster.conf



  

STABLE3
In order to address the different problems, without gigantic 
transitions, we had to:
● Maintain libccs API compatibility (to avoid changing all the 
applications on top and disrupting rolling upgrades).
● Offer modules to load the configurations without teaching each 
application about the different sources.
● Find a common location and format in which to store the 
runtime configuration (that is/or could be slightly different from 
on-disk configuration).
● Allow the new subsystem to notify applications of configuration 
changes (remove polling, more reliable configuration 
distributions to applications local to the node).



  

STABLE3

corosyncloaders objdb

libconfdb

libccs

adapters



  

STABLE3
OBJDB

the perfect “format-agnostic” storage

OBJDB is a very simple, fast and efficent service to store 
information. The API is rich and provides very useful features 
such as notifications with callbacks, and global locking.

The unique feature of loading OBJDB without running corosync 
is the cherry on top of the pie.

It become clear, very quickly, that OBJDB would be our source-
independent configuration storage.



  

STABLE3
Loaders

The task of a loader is to read the configuration from a specific 
format and load it into the OBJDB in the expected format.

A loader is nothing more than a format2objdb translator.

There are 2 constraints a loader has to respect.

A loader must:
● support both load and reload operations (write is optional)
● NOT change the configuration (1:1 translation)



  

STABLE3

Loaders

At the time of writing, there are 2 loaders available:

● xmlconfig
● ldapconfig



  

STABLE3

xmlconfig

Allows to load any xml file into the OBJDB. Default is set to 
/etc/cluster/cluster.conf (or equivalent set at build time).

It is possible to override the default config file by setting 
COROSYNC_CLUSTER_CONFIG_FILE environment variable.

This is currently the default loader.



  

STABLE3

ldapconfig

Allows the configuration to be loaded from an LDAP server into 
the OBJDB.

A detailed document on setting up ldapconfig can be found here:

http://people.redhat.com/ccaulfie/docs/ClusterLDAP.pdf



  

STABLE3
Adapters

The tasks of adapters is to make sure that the configuration that 
has been loaded into the OBJDB is valid and suitable for 
operations.

Adapters are allowed to modify the runtime configuration 
applying sane defaults where none are provided and should not 
care what the configuration source is. It will perform all the 
operations within the OBJDB.

It is important to understand that adapters will NOT  change on-
disk configuration.

At the time of writing, only the cman-preconfig adapter exists.



  

STABLE3

libconfdb

libconfdb, in short, provides access to the full OBJDB API for 
applications.

Cluster applications don´t use it directly, but it is worth 
mentioning it because it is the gatekeeper for accessing the 
OBJDB without running corosync.



  

STABLE3

libccs

is the only authoritative method to access runtime cluster 
configuration.

Generally speaking libccs is an XML view of the OBJDB.

It has been heavily rewritten to increase performance, error 
checks/reports. 



  

STABLE3
libccs

has 2 operational mode:

● xpathlite (default), is a fast xpath emulator that supports only a 
very small subset of xpath features. It has been written to avoid  
the libxml2 overhead and fulfill all the current cluster xpath 
requirements.

● fullxpath, uses the full xpath engine as provided by libxml2. It 
has a heavier memory and cpu footprint because of the internal 
communication with libxml2.

The operational mode has to be set before initialising the library.



  

STABLE3
Chaining loaders and adapters

The schema in slide 10 only shows the current default 
configuration subsystem setting, by limiting the view to one 
Loader (xmlconfig) and one Adapter (cman-preconfig) but in 
reality it is possible to chain an endless number of Loaders and 
Adapters.

The env. variable COROSYNC_DEFAULT_CONFIG_IFACE can 
be set with a colon separated list of loaders/adapters to be 
executed at startup time.

The order of the list is respected both at load and reload 
operation time.



  

STABLE3
Command line tools

● ccs_tool – replaces ccs_test with query functionalities. Other 
features remain unchanged.
● ccs_sync (conga tool) – provides a single command to 
synchronise the configuration across cluster nodes.
● ccs_config_dump – allows configuration dump in XML format, 
independantly from the source.
● ccs_config_validate – validate the configuration against a 
RelaxNG schema.
● ccs_test is now a symlink to ccs_tool and emulates the 
behaviour of the old one for backward compatibility.



  

STABLE3
Configuration reload

“cman_tool version -r $version” is now the only tool required to 
perform the operation.

A lot of changes have been done for this operation. The most 
noticeable ones are:

● configuration is now validated before reload operations.
● configuration is automatically synchronised, via ccs_sync, 
before operation takes place.
● all cluster applications are now notified that the configuration 
has been changed (most applications will reload as much as 
possible. Some parameters cannot be changed at runtime).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

